1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
marc9220426836 edited this page 2025-04-08 13:38:54 +08:00
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled variations of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes reinforcement discovering to improve thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key differentiating feature is its support knowing (RL) step, which was utilized to fine-tune the design's reactions beyond the basic pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately boosting both relevance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, indicating it's equipped to break down complicated queries and higgledy-piggledy.xyz reason through them in a detailed way. This guided reasoning procedure enables the design to produce more accurate, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually caught the industry's attention as a flexible text-generation model that can be incorporated into different workflows such as agents, sensible reasoning and data analysis tasks.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion parameters, making it possible for efficient inference by routing queries to the most relevant specialist "clusters." This technique allows the model to specialize in different issue domains while maintaining total performance. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking abilities of the main R1 model to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more efficient designs to imitate the behavior and reasoning patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or engel-und-waisen.de Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and evaluate designs against crucial safety requirements. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop several guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, genbecle.com open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit boost, develop a limitation increase demand and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For instructions, see Establish approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid hazardous material, setiathome.berkeley.edu and evaluate designs against key security requirements. You can implement precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general circulation includes the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the design's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and pick the DeepSeek-R1 model.

The model detail page offers vital details about the design's abilities, rates structure, and implementation guidelines. You can discover detailed use directions, consisting of sample API calls and code snippets for combination. The design supports different text generation tasks, consisting of content creation, code generation, and concern answering, using its support learning optimization and CoT reasoning capabilities. The page also includes release options and licensing details to assist you start with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be triggered to configure the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of circumstances, enter a variety of instances (in between 1-100). 6. For Instance type, choose your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, you can set up sophisticated security and facilities settings, consisting of virtual private cloud (VPC) networking, service role consents, and file encryption settings. For a lot of utilize cases, the default settings will work well. However, for production deployments, you may wish to evaluate these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the deployment is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive interface where you can experiment with various triggers and change model parameters like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal results. For instance, material for inference.

This is an outstanding way to explore the design's thinking and text generation capabilities before incorporating it into your applications. The play area provides instant feedback, assisting you comprehend how the design responds to various inputs and letting you fine-tune your prompts for optimal outcomes.

You can quickly evaluate the design in the play area through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you require to get the .

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out inference utilizing a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends a request to generate text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides two convenient methods: utilizing the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you pick the technique that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design internet browser shows available models, with details like the provider name and model abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each model card shows key details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if applicable), suggesting that this model can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the design card to see the model details page.

    The design details page includes the following details:

    - The design name and provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage standards

    Before you deploy the model, it's advised to review the model details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the immediately generated name or create a customized one.
  1. For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of instances (default: 1). Selecting proper instance types and counts is vital for expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the design.

    The deployment process can take several minutes to finish.

    When deployment is complete, your endpoint status will alter to InService. At this moment, the model is all set to accept inference demands through the endpoint. You can keep an eye on the release development on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the deployment is complete, you can conjure up the design using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for deploying the model is offered in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To prevent unwanted charges, finish the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the design utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace deployments.
  5. In the Managed deployments section, find the endpoint you desire to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the proper deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct ingenious solutions utilizing AWS services and sped up calculate. Currently, he is concentrated on developing methods for fine-tuning and optimizing the reasoning efficiency of big language designs. In his downtime, Vivek delights in hiking, viewing movies, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building services that assist customers accelerate their AI journey and unlock service worth.