308 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			PHP
		
	
	
		
		
			
		
	
	
			308 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			PHP
		
	
	
|  | <?php | ||
|  | 
 | ||
|  | /** | ||
|  |  * Class for converting between different unit-lengths as specified by | ||
|  |  * CSS. | ||
|  |  */ | ||
|  | class HTMLPurifier_UnitConverter | ||
|  | { | ||
|  | 
 | ||
|  |     const ENGLISH = 1; | ||
|  |     const METRIC = 2; | ||
|  |     const DIGITAL = 3; | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Units information array. Units are grouped into measuring systems | ||
|  |      * (English, Metric), and are assigned an integer representing | ||
|  |      * the conversion factor between that unit and the smallest unit in | ||
|  |      * the system. Numeric indexes are actually magical constants that | ||
|  |      * encode conversion data from one system to the next, with a O(n^2) | ||
|  |      * constraint on memory (this is generally not a problem, since | ||
|  |      * the number of measuring systems is small.) | ||
|  |      */ | ||
|  |     protected static $units = array( | ||
|  |         self::ENGLISH => array( | ||
|  |             'px' => 3, // This is as per CSS 2.1 and Firefox. Your mileage may vary
 | ||
|  |             'pt' => 4, | ||
|  |             'pc' => 48, | ||
|  |             'in' => 288, | ||
|  |             self::METRIC => array('pt', '0.352777778', 'mm'), | ||
|  |         ), | ||
|  |         self::METRIC => array( | ||
|  |             'mm' => 1, | ||
|  |             'cm' => 10, | ||
|  |             self::ENGLISH => array('mm', '2.83464567', 'pt'), | ||
|  |         ), | ||
|  |     ); | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Minimum bcmath precision for output. | ||
|  |      * @type int | ||
|  |      */ | ||
|  |     protected $outputPrecision; | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Bcmath precision for internal calculations. | ||
|  |      * @type int | ||
|  |      */ | ||
|  |     protected $internalPrecision; | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Whether or not BCMath is available. | ||
|  |      * @type bool | ||
|  |      */ | ||
|  |     private $bcmath; | ||
|  | 
 | ||
|  |     public function __construct($output_precision = 4, $internal_precision = 10, $force_no_bcmath = false) | ||
|  |     { | ||
|  |         $this->outputPrecision = $output_precision; | ||
|  |         $this->internalPrecision = $internal_precision; | ||
|  |         $this->bcmath = !$force_no_bcmath && function_exists('bcmul'); | ||
|  |     } | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Converts a length object of one unit into another unit. | ||
|  |      * @param HTMLPurifier_Length $length | ||
|  |      *      Instance of HTMLPurifier_Length to convert. You must validate() | ||
|  |      *      it before passing it here! | ||
|  |      * @param string $to_unit | ||
|  |      *      Unit to convert to. | ||
|  |      * @return HTMLPurifier_Length|bool | ||
|  |      * @note | ||
|  |      *      About precision: This conversion function pays very special | ||
|  |      *      attention to the incoming precision of values and attempts | ||
|  |      *      to maintain a number of significant figure. Results are | ||
|  |      *      fairly accurate up to nine digits. Some caveats: | ||
|  |      *          - If a number is zero-padded as a result of this significant | ||
|  |      *            figure tracking, the zeroes will be eliminated. | ||
|  |      *          - If a number contains less than four sigfigs ($outputPrecision) | ||
|  |      *            and this causes some decimals to be excluded, those | ||
|  |      *            decimals will be added on. | ||
|  |      */ | ||
|  |     public function convert($length, $to_unit) | ||
|  |     { | ||
|  |         if (!$length->isValid()) { | ||
|  |             return false; | ||
|  |         } | ||
|  | 
 | ||
|  |         $n = $length->getN(); | ||
|  |         $unit = $length->getUnit(); | ||
|  | 
 | ||
|  |         if ($n === '0' || $unit === false) { | ||
|  |             return new HTMLPurifier_Length('0', false); | ||
|  |         } | ||
|  | 
 | ||
|  |         $state = $dest_state = false; | ||
|  |         foreach (self::$units as $k => $x) { | ||
|  |             if (isset($x[$unit])) { | ||
|  |                 $state = $k; | ||
|  |             } | ||
|  |             if (isset($x[$to_unit])) { | ||
|  |                 $dest_state = $k; | ||
|  |             } | ||
|  |         } | ||
|  |         if (!$state || !$dest_state) { | ||
|  |             return false; | ||
|  |         } | ||
|  | 
 | ||
|  |         // Some calculations about the initial precision of the number;
 | ||
|  |         // this will be useful when we need to do final rounding.
 | ||
|  |         $sigfigs = $this->getSigFigs($n); | ||
|  |         if ($sigfigs < $this->outputPrecision) { | ||
|  |             $sigfigs = $this->outputPrecision; | ||
|  |         } | ||
|  | 
 | ||
|  |         // BCMath's internal precision deals only with decimals. Use
 | ||
|  |         // our default if the initial number has no decimals, or increase
 | ||
|  |         // it by how ever many decimals, thus, the number of guard digits
 | ||
|  |         // will always be greater than or equal to internalPrecision.
 | ||
|  |         $log = (int)floor(log(abs($n), 10)); | ||
|  |         $cp = ($log < 0) ? $this->internalPrecision - $log : $this->internalPrecision; // internal precision
 | ||
|  | 
 | ||
|  |         for ($i = 0; $i < 2; $i++) { | ||
|  | 
 | ||
|  |             // Determine what unit IN THIS SYSTEM we need to convert to
 | ||
|  |             if ($dest_state === $state) { | ||
|  |                 // Simple conversion
 | ||
|  |                 $dest_unit = $to_unit; | ||
|  |             } else { | ||
|  |                 // Convert to the smallest unit, pending a system shift
 | ||
|  |                 $dest_unit = self::$units[$state][$dest_state][0]; | ||
|  |             } | ||
|  | 
 | ||
|  |             // Do the conversion if necessary
 | ||
|  |             if ($dest_unit !== $unit) { | ||
|  |                 $factor = $this->div(self::$units[$state][$unit], self::$units[$state][$dest_unit], $cp); | ||
|  |                 $n = $this->mul($n, $factor, $cp); | ||
|  |                 $unit = $dest_unit; | ||
|  |             } | ||
|  | 
 | ||
|  |             // Output was zero, so bail out early. Shouldn't ever happen.
 | ||
|  |             if ($n === '') { | ||
|  |                 $n = '0'; | ||
|  |                 $unit = $to_unit; | ||
|  |                 break; | ||
|  |             } | ||
|  | 
 | ||
|  |             // It was a simple conversion, so bail out
 | ||
|  |             if ($dest_state === $state) { | ||
|  |                 break; | ||
|  |             } | ||
|  | 
 | ||
|  |             if ($i !== 0) { | ||
|  |                 // Conversion failed! Apparently, the system we forwarded
 | ||
|  |                 // to didn't have this unit. This should never happen!
 | ||
|  |                 return false; | ||
|  |             } | ||
|  | 
 | ||
|  |             // Pre-condition: $i == 0
 | ||
|  | 
 | ||
|  |             // Perform conversion to next system of units
 | ||
|  |             $n = $this->mul($n, self::$units[$state][$dest_state][1], $cp); | ||
|  |             $unit = self::$units[$state][$dest_state][2]; | ||
|  |             $state = $dest_state; | ||
|  | 
 | ||
|  |             // One more loop around to convert the unit in the new system.
 | ||
|  | 
 | ||
|  |         } | ||
|  | 
 | ||
|  |         // Post-condition: $unit == $to_unit
 | ||
|  |         if ($unit !== $to_unit) { | ||
|  |             return false; | ||
|  |         } | ||
|  | 
 | ||
|  |         // Useful for debugging:
 | ||
|  |         //echo "<pre>n";
 | ||
|  |         //echo "$n\nsigfigs = $sigfigs\nnew_log = $new_log\nlog = $log\nrp = $rp\n</pre>\n";
 | ||
|  | 
 | ||
|  |         $n = $this->round($n, $sigfigs); | ||
|  |         if (strpos($n, '.') !== false) { | ||
|  |             $n = rtrim($n, '0'); | ||
|  |         } | ||
|  |         $n = rtrim($n, '.'); | ||
|  | 
 | ||
|  |         return new HTMLPurifier_Length($n, $unit); | ||
|  |     } | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Returns the number of significant figures in a string number. | ||
|  |      * @param string $n Decimal number | ||
|  |      * @return int number of sigfigs | ||
|  |      */ | ||
|  |     public function getSigFigs($n) | ||
|  |     { | ||
|  |         $n = ltrim($n, '0+-'); | ||
|  |         $dp = strpos($n, '.'); // decimal position
 | ||
|  |         if ($dp === false) { | ||
|  |             $sigfigs = strlen(rtrim($n, '0')); | ||
|  |         } else { | ||
|  |             $sigfigs = strlen(ltrim($n, '0.')); // eliminate extra decimal character
 | ||
|  |             if ($dp !== 0) { | ||
|  |                 $sigfigs--; | ||
|  |             } | ||
|  |         } | ||
|  |         return $sigfigs; | ||
|  |     } | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Adds two numbers, using arbitrary precision when available. | ||
|  |      * @param string $s1 | ||
|  |      * @param string $s2 | ||
|  |      * @param int $scale | ||
|  |      * @return string | ||
|  |      */ | ||
|  |     private function add($s1, $s2, $scale) | ||
|  |     { | ||
|  |         if ($this->bcmath) { | ||
|  |             return bcadd($s1, $s2, $scale); | ||
|  |         } else { | ||
|  |             return $this->scale((float)$s1 + (float)$s2, $scale); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Multiples two numbers, using arbitrary precision when available. | ||
|  |      * @param string $s1 | ||
|  |      * @param string $s2 | ||
|  |      * @param int $scale | ||
|  |      * @return string | ||
|  |      */ | ||
|  |     private function mul($s1, $s2, $scale) | ||
|  |     { | ||
|  |         if ($this->bcmath) { | ||
|  |             return bcmul($s1, $s2, $scale); | ||
|  |         } else { | ||
|  |             return $this->scale((float)$s1 * (float)$s2, $scale); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Divides two numbers, using arbitrary precision when available. | ||
|  |      * @param string $s1 | ||
|  |      * @param string $s2 | ||
|  |      * @param int $scale | ||
|  |      * @return string | ||
|  |      */ | ||
|  |     private function div($s1, $s2, $scale) | ||
|  |     { | ||
|  |         if ($this->bcmath) { | ||
|  |             return bcdiv($s1, $s2, $scale); | ||
|  |         } else { | ||
|  |             return $this->scale((float)$s1 / (float)$s2, $scale); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Rounds a number according to the number of sigfigs it should have, | ||
|  |      * using arbitrary precision when available. | ||
|  |      * @param float $n | ||
|  |      * @param int $sigfigs | ||
|  |      * @return string | ||
|  |      */ | ||
|  |     private function round($n, $sigfigs) | ||
|  |     { | ||
|  |         $new_log = (int)floor(log(abs($n), 10)); // Number of digits left of decimal - 1
 | ||
|  |         $rp = $sigfigs - $new_log - 1; // Number of decimal places needed
 | ||
|  |         $neg = $n < 0 ? '-' : ''; // Negative sign
 | ||
|  |         if ($this->bcmath) { | ||
|  |             if ($rp >= 0) { | ||
|  |                 $n = bcadd($n, $neg . '0.' . str_repeat('0', $rp) . '5', $rp + 1); | ||
|  |                 $n = bcdiv($n, '1', $rp); | ||
|  |             } else { | ||
|  |                 // This algorithm partially depends on the standardized
 | ||
|  |                 // form of numbers that comes out of bcmath.
 | ||
|  |                 $n = bcadd($n, $neg . '5' . str_repeat('0', $new_log - $sigfigs), 0); | ||
|  |                 $n = substr($n, 0, $sigfigs + strlen($neg)) . str_repeat('0', $new_log - $sigfigs + 1); | ||
|  |             } | ||
|  |             return $n; | ||
|  |         } else { | ||
|  |             return $this->scale(round($n, $sigfigs - $new_log - 1), $rp + 1); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     /** | ||
|  |      * Scales a float to $scale digits right of decimal point, like BCMath. | ||
|  |      * @param float $r | ||
|  |      * @param int $scale | ||
|  |      * @return string | ||
|  |      */ | ||
|  |     private function scale($r, $scale) | ||
|  |     { | ||
|  |         if ($scale < 0) { | ||
|  |             // The f sprintf type doesn't support negative numbers, so we
 | ||
|  |             // need to cludge things manually. First get the string.
 | ||
|  |             $r = sprintf('%.0f', (float)$r); | ||
|  |             // Due to floating point precision loss, $r will more than likely
 | ||
|  |             // look something like 4652999999999.9234. We grab one more digit
 | ||
|  |             // than we need to precise from $r and then use that to round
 | ||
|  |             // appropriately.
 | ||
|  |             $precise = (string)round(substr($r, 0, strlen($r) + $scale), -1); | ||
|  |             // Now we return it, truncating the zero that was rounded off.
 | ||
|  |             return substr($precise, 0, -1) . str_repeat('0', -$scale + 1); | ||
|  |         } | ||
|  |         return sprintf('%.' . $scale . 'f', (float)$r); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | // vim: et sw=4 sts=4
 |