1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
alirupert6620 edited this page 2025-02-08 14:29:24 +00:00
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion specifications to develop, experiment, and properly scale your generative AI concepts on AWS.

In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled variations of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses reinforcement learning to boost reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial identifying function is its support knowing (RL) action, which was utilized to improve the design's responses beyond the basic pre-training and tweak procedure. By incorporating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, ultimately improving both relevance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, implying it's equipped to break down complicated queries and factor through them in a detailed way. This assisted thinking process allows the model to produce more precise, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while concentrating on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has actually captured the industry's attention as a flexible text-generation model that can be integrated into various workflows such as representatives, sensible thinking and data analysis tasks.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion parameters, making it possible for effective inference by routing inquiries to the most pertinent professional "clusters." This technique allows the design to concentrate on different issue domains while maintaining general effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, wiki.vst.hs-furtwangen.de and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective models to simulate the habits and reasoning patterns of the larger DeepSeek-R1 model, using it as an instructor model.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this model with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid harmful content, and examine models against key safety criteria. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to various use cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limit boost, develop a limit increase request and reach out to your account team.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For guidelines, see Set up authorizations to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid harmful material, and evaluate models against crucial safety requirements. You can carry out precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to examine user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general flow includes the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After receiving the design's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and pick the DeepSeek-R1 design.

The model detail page supplies vital details about the design's abilities, prices structure, and application standards. You can discover detailed use guidelines, consisting of sample API calls and code bits for combination. The model supports numerous text generation tasks, consisting of material creation, code generation, and question answering, using its reinforcement finding out optimization and CoT thinking capabilities. The page likewise consists of implementation choices and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be prompted to set up the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of instances, go into a variety of instances (between 1-100). 6. For example type, pick your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can set up sophisticated security and facilities settings, consisting of virtual private cloud (VPC) networking, service role authorizations, and file encryption settings. For the majority of use cases, the default settings will work well. However, for production deployments, you may wish to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the deployment is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive user interface where you can try out different prompts and change design criteria like temperature and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal results. For example, content for reasoning.

This is an outstanding way to explore the model's thinking and text generation capabilities before incorporating it into your applications. The play ground provides immediate feedback, helping you understand how the model reacts to different inputs and letting you tweak your prompts for ideal results.

You can rapidly evaluate the design in the playground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference using a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up reasoning specifications, and sends a request to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 practical methods: using the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both techniques to help you choose the method that finest matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model web browser shows available models, with details like the supplier name and model abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each model card shows key details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if applicable), showing that this design can be registered with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to view the design details page.

    The model details page consists of the following details:

    - The model name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you deploy the design, it's advised to evaluate the design details and license terms to confirm compatibility with your usage case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, use the automatically generated name or develop a custom-made one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of circumstances (default: 1). Selecting suitable instance types and counts is vital for cost and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to release the model.

    The deployment procedure can take several minutes to complete.

    When release is complete, your endpoint status will alter to InService. At this point, the model is all set to accept reasoning demands through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the deployment is total, you can conjure up the design utilizing a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get going with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the required AWS permissions and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for inference programmatically. The code for the model is provided in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Clean up

    To prevent unwanted charges, finish the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace deployments.
  5. In the Managed releases section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the proper release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business develop ingenious solutions utilizing AWS services and sped up compute. Currently, he is concentrated on establishing methods for fine-tuning and enhancing the reasoning efficiency of big language models. In his totally free time, Vivek takes pleasure in treking, seeing movies, and trying various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about building services that help consumers accelerate their AI journey and unlock organization value.